Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
3.
mBio ; 12(1)2021 02 09.
Article in English | MEDLINE | ID: covidwho-1075939

ABSTRACT

Whether mother-to-infant SARS-CoV-2 transmission can occur during breastfeeding and, if so, whether the benefits of breastfeeding outweigh this risk during maternal COVID-19 illness remain important questions. Using RT-qPCR, we did not detect SARS-CoV-2 RNA in any milk sample (n = 37) collected from 18 women following COVID-19 diagnosis. Although we detected evidence of viral RNA on 8 out of 70 breast skin swabs, only one was considered a conclusive positive result. In contrast, 76% of the milk samples collected from women with COVID-19 contained SARS-CoV-2-specific IgA, and 80% had SARS-CoV-2-specific IgG. In addition, 62% of the milk samples were able to neutralize SARS-CoV-2 infectivity in vitro, whereas milk samples collected prior to the COVID-19 pandemic were unable to do so. Taken together, our data do not support mother-to-infant transmission of SARS-CoV-2 via milk. Importantly, milk produced by infected mothers is a beneficial source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness.IMPORTANCE Results from prior studies assaying human milk for the presence of SARS-CoV-2, the causative virus of COVID-19, have suggested milk may act as a potential vehicle for mother-to-child transmission. Most previous studies are limited because they followed only a few participants, were cross-sectional, and/or failed to report how milk was collected and/or analyzed. As such, considerable uncertainty remains regarding whether human milk is capable of transmitting SARS-CoV-2 from mother to child. Here, we report that repeated milk samples collected from 18 women following COVID-19 diagnosis did not contain SARS-CoV-2 RNA; however, risk of transmission via breast skin should be further evaluated. Importantly, we found that milk produced by infected mothers is a source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness as milk likely provides specific immunologic benefits to infants.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/immunology , Milk, Human/immunology , Pregnancy Complications, Infectious/immunology , SARS-CoV-2/immunology , Adult , Breast/virology , Breast Feeding , COVID-19/transmission , COVID-19/virology , Female , Humans , Infant , Infectious Disease Transmission, Vertical , Male , Milk, Human/virology , Mothers , Pregnancy , Pregnancy Complications, Infectious/virology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification
4.
Eur Rev Med Pharmacol Sci ; 24(20): 10879-10884, 2020 10.
Article in English | MEDLINE | ID: covidwho-1068256

ABSTRACT

OBJECTIVE: Among the illnesses that may develop from COVID-19, the disease caused by the novel coronavirus (SARS-CoV-2), is pneumonia, a severe acute respiratory infectious disease. SARS-CoV-2 continues to spread worldwide and has caused hundreds of thousands of deaths thus far and has disrupted the world economy. PATIENTS AND METHODS: This review summarized the reported distributions of SARS-CoV-2 in 13 biological samples of the human body, including nose, feces, sperm, tears, breast milk, cerebrospinal fluid, urine, organs, sputum, cell lines, bronchial brush, blood, throat, and bronchoalveolar lavage fluid. Moreover, this review briefly describes the detection of SARS-CoV-2 in human body samples of five other coronaviruses. CONCLUSIONS: This review offers several recommendations for controlling the spread of SARS-CoV-2 control, specifically, sample collection from suspected cases from foreign countries and risk assessment of imported special goods (biological materials).


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Breast/virology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/cerebrospinal fluid , Coronavirus Infections/urine , Early Diagnosis , Feces/virology , Female , Humans , Male , Nose/virology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/cerebrospinal fluid , Pneumonia, Viral/urine , SARS-CoV-2 , Spermatozoa/virology , Sputum/virology , Tears/virology
5.
PLoS One ; 15(12): e0243959, 2020.
Article in English | MEDLINE | ID: covidwho-1067398

ABSTRACT

There has been significant concern regarding fertility and reproductive outcomes during the SARS-CoV2 pandemic. Recent data suggests a high concentration of SARS-Cov2 receptors, ACE2 or TMPRSS2, in nasal epithelium and cornea, which explains person-to-person transmission. We investigated the prevalence of SARS-CoV2 receptors among reproductive tissues by exploring the single-cell sequencing datasets from uterus, myometrium, ovary, fallopian tube, and breast epithelium. We did not detect significant expression of either ACE2 or TMPRSS2 in the normal human myometrium, uterus, ovaries, fallopian tube, or breast. Furthermore, none of the cell types in the female reproductive organs we investigated, showed the co-expression of ACE2 with proteases, TMPRSS2, Cathepsin B (CTSB), and Cathepsin L (CTSL) known to facilitate the entry of SARS2-CoV2 into the host cell. These results suggest that myometrium, uterus, ovaries, fallopian tube, and breast are unlikely to be susceptible to infection by SARS-CoV2.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Cathepsin B/genetics , Cathepsin L/genetics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2/metabolism , Breast/metabolism , Breast/virology , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Epithelium/metabolism , Epithelium/virology , Fallopian Tubes/metabolism , Fallopian Tubes/virology , Female , Fertility/genetics , High-Throughput Nucleotide Sequencing , Humans , Myometrium/metabolism , Myometrium/virology , Ovary/metabolism , Ovary/virology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reproductive Tract Infections/genetics , Reproductive Tract Infections/virology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Single-Cell Analysis , Uterus/metabolism , Uterus/virology
SELECTION OF CITATIONS
SEARCH DETAIL